Assessing the stereoelectronic properties of pyrrolyl phosphines and related ligands. The quantitative analysis of ligand effects (QALE)

Anthony Fernandez, ${ }^{a}$ Clementina Reyes, ${ }^{a}$ Tsung Ying Lee, ${ }^{a}$ Alfred Prock, ${ }^{* a}$ Warren P. Giering,* ${ }^{a}$ Christopher M. Haar ${ }^{b}$ and Steven P. Nolan ${ }^{b}$

${ }^{a}$ Department of Chemistry, Metcalf Science and Engineering Center, Boston University, Boston MA 02215, USA
${ }^{b}$ Department of Chemistry, University of New Orleans, New Orleans, LA 70148, USA
Received (in Cambridge, UK) 2nd May 2000, Accepted 4th May 2000
Published on the Web 15th June 2000

Abstract

By application of the QALE model (quantitative analysis of ligand effects) to the standard reduction potentials (E° values) and the standard enthalpies of reduction $\left(\Delta H^{\circ}\right)$ of the $\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right) \mathrm{Fe}(\mathrm{COMe})^{+/ 0}$ couple $\left(\mathrm{PZ}_{3}=\right.$ a phosphorus(III) ligand), and v_{CO} for $\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right) \mathrm{Fe}(\mathrm{COMe})^{0}$, we have determined that a minimum of four parameters are necessary to describe the stereoelectronic properties of the set of ligands $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}(\mathrm{Pyr}=$ pyrrolyl) and $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}\left(\mathrm{NC}_{4} \mathrm{H}_{8}=\right.$ pyrrolidinyl). These parameters are $\chi_{\mathrm{d}}, \theta, E_{\text {ar }}$ and the π acidity parameter, π_{p}. The values of these parameters were determined by linear regression analysis of a set of QALE equations. The coefficients of these equations were based on the analyses of data for $\mathrm{PR}_{3}, \mathrm{PPh}_{i} \mathrm{R}_{3-i}, \mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}, \mathrm{P}(\mathrm{OR})_{3}$, and $\mathrm{P}\left(\mathrm{O}-p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$. The parameters for $\mathrm{P}(\mathrm{Pyr})_{3}$ are $\chi_{\mathrm{d}}=31.9 \pm 0.7, \theta=145 \pm 3, E_{\mathrm{ar}}=3.3 \pm 0.2$ and $\pi_{\mathrm{p}}=1.9 \pm 0.2$; and for $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$ the parameters are $\chi_{\mathrm{d}}=-1.2 \pm 1.4, \theta=145 \pm 5, E_{\mathrm{ar}}=-0.6 \pm 0.4$ and $\pi_{\mathrm{p}}=0.9 \pm 0.3 . \mathrm{P}(\mathrm{Pyr})_{3}$ is a poor σ donor that possesses an $E_{\text {ar }}$ parameter comparable to $\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$ and a π acidity that is about two thirds that of $\mathrm{P}(\mathrm{OR})_{3}$ and half that of $\mathrm{P}\left(\mathrm{O}-p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$. On the other hand, $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$, which is one of the strongest σ donor phosphorus(III) ligands, is a weak π acid with a value for $E_{\text {ar }}$ that is statistically indistinguishable from zero. $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$ and $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$ appear to be isosteric to $\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$.

Introduction

There is accumulating and compelling evidence that the pyrrolyl phosphines, ${ }^{1} \mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}(i=0-2)\right.$, are π acids. This assertion is certainly supported by Nolan and co-workers' ${ }^{2}$ observation that the trend of $-\Delta H_{\mathrm{rx}}$ in reaction (1) is $\mathrm{CO} \gg$

[RPNP]Rn(COE)

$$
\mathrm{R}=\mathrm{Ph}, \mathrm{i}-\mathrm{Pr} ; \mathrm{COE}=\text { cyclooctene }
$$

$\mathrm{P}(\mathrm{Pyr})_{3}>\mathrm{PPh}(\mathrm{Pyr})_{2}>\mathrm{PPh}_{2} \mathrm{Pyr}>\mathrm{PPh}_{3 .}$. This trend parallels the putative π acidity of the pyrrolyl ligands and is in opposition to their overall electron donor capacity.
Likewise, the initial formation of cis-Fe(CO) $)_{3}\left[\mathrm{P}(\mathrm{Pyr})_{3}\right]_{2}$ from $\mathrm{Fe}(\mathrm{CO})_{3}(\mathrm{BDA})(\mathrm{BDA}=\text { benzylideneacetone })^{3}$ and the facile transformation of $\mathrm{Rh}(\mathrm{CO})_{4}{ }^{-}$to $\mathrm{Rh}\left[\mathrm{P}(\mathrm{Pyr})_{3}\right]_{4}$ are consonant with the intervention of $\mathrm{M}-\mathrm{P} \pi$-bonding. The high v_{CO} values of $\mathrm{Rh}(\mathrm{CO})(\mathrm{Cl})\left[\mathrm{P}(\mathrm{Pyr})_{3}\right]_{2}$ indicate that $\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right.$ are poorer electron donors than $\mathrm{P}(\mathrm{OPh})_{3}$, possibly because of the greater π-acidity of pyrrolyl phosphines. ${ }^{1}$ Recently, Gonzalez-Blanco and Branchadell, ${ }^{4}$ through a density functional study of $\mathrm{Fe}(\mathrm{CO})_{4} \mathrm{PZ}_{3}$ (where PZ_{3} is a general representation of a phosphorus(III) ligand), predicted that $\mathrm{P}(\mathrm{Pyr})_{3}$ would be a π acid comparable in strength to PF_{3}. Thus, both experimental and theoretical studies suggest that pyrrolyl phosphines can behave as π acids.

Surprisingly, however, Nolan's thermochemical studies of other substitution reactions involving pyrrolyl phosphines do not make a clear cut case for π acidity ${ }^{3,5-9}$ especially when the
heats of reaction $\left(\Delta H_{\mathrm{rx}}\right)$ of $\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right.$ are compared to those of $\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$. Qualitatively, it appears that $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$ behave at times as π acids and at other times they behave more like $\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$. Nolan addressed this dichotomy and suggested that the dramatic manifestation of the π acidity of $\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right.$ in reaction (1) is due to the synergistic interaction between the π basic amide group and the π acidic pyrrolyl phosphine. ${ }^{2}$ He further reasoned that the failure to observe significant π effects in $-\Delta H_{\mathrm{rx}}$ for the formation of $\mathrm{Rh}(\mathrm{CO})$ -$(\mathrm{Cl})\left[\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right]_{2}\right.$ is a result of compensating competition between two π acidic ligands.

Central to the problem of detecting and assessing π acidity is the identification and evaluation of the stereoelectronic parameters for $\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right.$. Values for the electronic parameter, $\chi,{ }^{10,11}$ and the steric parameter, $\theta,{ }^{11}$ for $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$ have been suggested. Based on the molecular structure of $\mathrm{Rh}(\mathrm{CO})(\mathrm{Cl})-$ $\left[\mathrm{P}(\mathrm{Pyr})_{3}\right)_{2}$, Petersen and Moloy ${ }^{1}$ concluded that $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$ are isosteric with $\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$ and assigned a cone angle of 145° to $\mathrm{P}(\mathrm{Pyr})_{3}$. Nolan and co-workers ${ }^{2}$ came to the same conclusion based on the structures of $[\mathrm{RPNP}] \mathrm{RhPZ}_{3}$ complexes. ${ }^{2}$ (See reaction (1) for the structure of [RPNP].) Analysis of v_{CO} for $\mathrm{Rh}(\mathrm{CO})(\mathrm{Cl})\left(\mathrm{PZ}_{3}\right)_{2}$ in terms of the electronic parameter, $\chi{ }^{10,11}$ also led Moloy and Petersen ${ }^{1}$ to predict that $\chi=36$ for $\mathrm{P}(\mathrm{Pyr})_{3}$. Through an analysis of ΔH_{rx} for the formation of $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{PZ}_{3}\right)_{2}$, Serron and Nolan ${ }^{3}$ arrived at a set of values: $\chi=37,29,20$ for $\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right.$. These χ values are consistent with $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$ being poor electron donors overall, possibly because of their π acidity. However, there is a problem with using χ as a fundamental electronic parameter for π acidic ligands. We have already pointed out that χ for the π acidic ligands is a measure of their total electron donor capacity; χ, undoubtedly, has a contribution from π acidity ${ }^{12,13}$ and possibly from $E_{\text {ar }}{ }^{12}$ ('aryl effect' ${ }^{14}$). Several years ago, we introduced the χ_{d} parameter, which we suggested was free of π influences and therefore was a better descriptor of the σ donor

Table $1 \quad E^{\circ} / T^{a}, \Delta H^{\circ}$, and $\Delta S^{\circ c}$ for the reduction of $\eta-\mathrm{Cp}(\mathrm{CO})(\mathrm{L}) \mathrm{Fe}(\mathrm{COMe})^{+}$, and, $v_{\mathrm{Co}}{ }^{d}$ for $\eta-\mathrm{Cp}(\mathrm{CO})(\mathrm{L}) \mathrm{Fe}(\mathrm{COMe})^{0}$

Ligand (L)	$E^{\circ} / 229$	$E^{\circ} / 252$	$E^{\circ} / 264$	$E^{\circ} / 273$	$E^{\circ} / 293$	ΔH°	ΔS°
$\mathrm{PPh}_{2}(\mathrm{Pyr})$	-4.81×10^{-4}	-4.49×10^{-4}	-4.35×10^{-4}	-4.21×10^{-4}	-4.05×10^{-4}	7.81	-12.3
$\mathrm{PPh}(\mathrm{Pyr})_{2}$	1.44×10^{-5}	3.16×10^{-6}	-1.14×10^{-6}	-3.29×10^{-6}	-1.35×10^{-5}	-2.74	-10.52
$\mathrm{P}(\mathrm{Pyr})_{3}$	4.74×10^{-4}	4.30×10^{-4}	4.06×10^{-4}	3.92×10^{-4}	3.63×10^{-4}	-11.3	-3.53
$\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$	-2.13×10^{-3}	-1.94×10^{-3}	-1.86×10^{-3}	-1.80×10^{-3}	-1.68×10^{-3}	49.8	

${ }^{a} E^{\circ}(\mathrm{V})$ were measured via cyclic voltammetry in acetonitrile using tetrabutylammonium hexafluorophosphate as the supporting electrolyte and acetylferrocene as the internal standard. The uncertainty in E° is 0.7 mV . ${ }^{b}$ In units of $\mathrm{kJ} \mathrm{mol}^{-1}$. ${ }^{c}$ In units of $\mathrm{J} \mathrm{K}^{-1} \mathrm{~mol}^{-1}$. ${ }^{d} v_{\mathrm{CO}}-1900 \mathrm{~cm}^{-1}$.

Table 2 Coefficients for the plots (Fig. 2) of $E^{\circ} / T v s .1 / T$, fit to the following equation: $E^{\circ} / T=a^{\prime}(1 / T)+b^{\prime}$

L	a^{\prime}	b^{\prime}	r^{2}	n
$\mathrm{PPh}_{2}(\mathrm{Pyr})$	$-(0.081 \pm 0.003)$	$(1.3 \pm 0.1) \times 10^{-4}$	0.999	5
$\mathrm{PPh}(\mathrm{Pyr})_{2}$	(0.028 ± 0.002)	$-(1.09 \pm 0.08) \times 10^{-4}$	0.999	5
$\mathrm{P}(\mathrm{Pyr})_{3}$	(0.117 ± 0.002)	$-(3.7 \pm 0.7) \times 10^{-5}$	0.999	5
$\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$	$-(0.480 \pm 0.004)$	$-(4 \pm 2) \times 10^{-5}$	0.999	5

ability of $\mathrm{PZ}_{3} .{ }^{13}$ More recently, we refined our original χ_{d} values for the phosphites so that they are also free of 'aryl effects' as well as π effects. ${ }^{12}$

Herein, we combine the QALE (quantitative analysis of ligand effects) model ${ }^{14-36}$ and the isoequilibrium behavior ${ }^{37-55}$ of the $\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right) \mathrm{Fe}(\mathrm{COMe})^{+/ 0}$ couple ${ }^{12,56,57}$ to determine the number and values of the electronic parameters of $\mathrm{PPh}_{i^{-}}$ $(\mathrm{Pyr})_{3-i}$ and $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$. We find that, indeed, like the phosphites, ${ }^{12}$ the parameter, π_{p}, is required to describe $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$ in addition to $\theta, \chi_{\mathrm{d}}$, and E_{ar}. The values for the stereoelectronic parameters for $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$ and $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$ were determined by regression analysis of the QALE equations for a variety of physicochemical properties. The coefficients of these QALE equations are based on the analysis of data for $\mathrm{PR}_{3}, \mathrm{P}(p-$ $\left.\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}, \mathrm{P}(\mathrm{OR})_{3}$, and $\mathrm{P}\left(\mathrm{O}-p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$ and are independent of the properties of $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$ or $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$.

Results and discussion

For the past few years, we have explored ways to determine the minimum number and values of the stereoelectronic parameters necessary to describe phosphorus(iII) ligands. ${ }^{12,20}$ One such way is based on plots of one physicochemical property versus another. ${ }^{20}$ This procedure provides us with the minimum number of parameters needed to describe a ligand but not their values. To determine the minimum number of parameters, we begin our analysis of $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$ by examining plots (Fig. 1) of ΔH° and $E^{\circ}(229 \mathrm{~K})$ for the $\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right) \mathrm{Fe}(\mathrm{COMe})^{+/ 0}$ couple [eqn. (2)] versus v_{CO} for $\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right) \mathrm{Fe}(\mathrm{COMe})^{0}$. All
$\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right) \mathrm{Fe}(\mathrm{COMe})^{+}+\mathrm{e}^{-}=$
$\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right) \mathrm{Fe}(\mathrm{COMe})^{0}$
these data were measured in our laboratory. The new E° / T, ΔH° and ΔS° data for the $\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right) \mathrm{Fe}(\mathrm{COMe})^{+/ 0}$ couple and v_{co} for $\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right) \mathrm{Fe}(\mathrm{COMe})^{0} \quad\left(\mathrm{PZ}_{3}=\mathrm{PPh}_{\mathrm{i}}(\mathrm{Pyr})_{3-i}\right.$ and $\left.\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}\right)$ are displayed in Table 1 along with the values for ΔH° and $\Delta S^{\circ} . \Delta H^{\circ}$ and ΔS° were calculated in the standard manner from the slopes and intercepts (Table 2) of the E° / T versus $1 / T$ plots. The ligands used in this study and their stereoelectronic parameters are displayed in Table 3. The sets of physicochemical data analyzed in this study are listed in Table 4.

Before we begin the analysis of the plots of one property $\left(\operatorname{prop}_{1}\right)$ versus a second property $\left(\right.$ prop $\left._{2}\right)$ in Fig. 1, we briefly discuss the simple algebra behind these plots. In the QALE model, each physicochemical property is described by its own linear equation [e.g. eqns. (3) and (4)] in terms of the stereoelectronic parameters of the phosphorus(III) ligands. ${ }^{12,20}$ In the absence of a steric threshold these equations are:

Table 3 Ligands (L) used in this study and their stereoelectronic properties ($\chi_{\mathrm{d}}, \theta, E_{\mathrm{ar}}, \pi_{\mathrm{p}}$). New values are displayed in bold type

	L	$\chi_{\mathrm{d}}{ }^{a}$	$\theta^{b /}{ }^{\circ}$	$E_{\text {ar }}{ }^{c}$	$\pi_{\mathrm{p}}{ }^{\text {d }}$
1	$\mathrm{P}\left(\mathrm{OCH}_{2}\right)_{3} \mathrm{CEt}$	20.0	101	0.2	5.0
2	$\mathrm{P}(\mathrm{OMe})_{3}$	17.9	107	1.0	2.8
3	$\mathrm{P}(\mathrm{OEt})_{3}$	15.8	109	1.1	2.9
4	$\mathrm{P}(\mathrm{OBu})_{3}$	15.9	110	1.3	2.7
5	$\mathrm{P}\left(\mathrm{OCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}\right)_{3}$	20.3	110	0.4	3.6
6	PMe_{3}	8.55	118	0	0
7	$\mathrm{P}(\mathrm{O}-\mathrm{i}-\mathrm{Bu})_{3}$	15.5	120 ?	1.4	3.0
8	$\mathrm{PPhMe}{ }_{2}$	10.5	122	1.0	0
9	$\mathrm{P}(\mathrm{O}-p-\mathrm{MeOPh})_{3}$	22.5	128	1.4	3.8
10	$\mathrm{P}(\mathrm{O}-p \mathrm{MePh})_{3}$	22.4	128	1.4	4.1
11	$\mathrm{P}(\mathrm{OPh})_{3}$	23.6	128	1.3	4.1
12	$\mathrm{P}(\mathrm{O}-p-\mathrm{ClPh})_{3}$	27.2	128	1.3	4.0
13	$\mathrm{P}(\mathrm{O}-p-\mathrm{CNPh})_{3}$	31.7	128	1.0	3.7
14	$\mathrm{P}(\mathrm{O}-\mathrm{i}-\mathrm{Pr})_{3}$	13.4	130	1.3	2.9
15	PEt_{3}	6.3	132	0	0
16	$\mathrm{P}(n-\mathrm{Bu})_{3}$	5.25	136	0	0
17	PPhEt_{2}	8.6	136	1.1	0
18	$\mathrm{PPh}_{2} \mathrm{Me}$	12.6	136	2.2	0
19	$\mathrm{PPh}(n-\mathrm{Bu})_{2}$	8.1	139	1.3	0
20	$\mathrm{PPh}_{2} \mathrm{Et}$	11.1	140	2.3	0
21	$\mathrm{PPh}_{2} \mathrm{Pr}$	11.2	141	1.9	0
22	$\mathrm{PPh}_{2}(n-\mathrm{Bu})$	11.3	142	2.1	0
23	$\mathrm{P}(\mathrm{i}-\mathrm{Bu})_{3}$	5.7	143	0	0
24	$\mathbf{P}(\mathbf{P y r})_{3}$	31.9	145	3.3	1.9
25	$\mathbf{P P h}(\mathbf{P y r})_{2}$	25.7	145	3.2	1.3
26	$\mathbf{P P h}_{2}(\mathbf{P y r})$	19.5	145	3.1	0.6
27	$\mathrm{P}\left(p-\mathrm{Me}_{2} \mathrm{NC}_{6} \mathrm{H}_{4}\right)_{3}$	5.25	145	2.7	0
28	$\mathrm{P}\left(p-\mathrm{MeOC}_{6} \mathrm{H}_{4}\right)_{3}$	10.5	145	2.7	0
29	$\mathrm{P}\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{3}$	11.5	145	2.7	0
30	$\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{2}\left(p-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)$	12.1	145	2.7	0
31	$\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$	13.25	145	2.7	0
32	$\mathrm{P}\left(p-\mathrm{FC}_{6} \mathrm{H}_{4}\right)_{3}$	15.7	145	2.7	0
33	$\mathrm{P}\left(p-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{3}$	16.8	145	2.7	0
34	$\mathrm{P}\left(p-\mathrm{F}_{3} \mathrm{CC}_{6} \mathrm{H}_{4}\right)_{3}$	20.5	145	2.7	0
35	$\mathbf{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$	-1.2	146	-0.6	0.9
36	$\mathrm{P}\left(m-\mathrm{MeC}_{6} \mathrm{H}_{4}\right)_{3}$	11.3	148	2.7	0
37	$\mathrm{P}\left(\mathrm{m}-\mathrm{ClC}_{6} \mathrm{H}_{4}\right)_{3}$	19.6	148	2.7	0
38	$\mathrm{PPh}_{2}(\mathrm{i}-\mathrm{Pr})$	9.6	150	1.7	0
39	$\mathrm{PPh}_{2} \mathrm{Cy}$	9.1	153	1.6	0
40	$\mathrm{PPh}(\mathrm{i}-\mathrm{Pr})_{2}$	7.1	155	1.7	0
41	$\mathrm{P}(\mathrm{i}-\mathrm{Pr})_{3}$	3.45	160	0	0
42	PPhCy_{2}	5.7	162	1.6	0
43	$\mathrm{P}(t-\mathrm{Bu})(\mathrm{i}-\mathrm{Pr})_{2}$	2.5	167	0	0
44	PCy_{3}	1.4	170	0	0
45	$\mathrm{P}(t-\mathrm{Bu}) \mathrm{Cy}_{2}$	0.9	174	0	0
46	$\mathrm{P}(t-\mathrm{Bu})_{3}$	0	182	0	0

${ }^{a}$ The χ_{d} values for the phosphites are taken from reference 12 . The χ_{d} values for the mixed alkylphenylphosphines are taken from reference 58. The χ_{d} values for PR_{3} and $\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$ are taken from reference 10 . ${ }^{b}$ Tolman's cone angles are taken from reference $11 .{ }^{c} E_{\mathrm{ar}}$ values are taken from references 58 and $14 .{ }^{d}$ The π_{p} values for the phosphites are taken from reference 12 .

$$
\begin{align*}
& \operatorname{prop}_{1}=a_{1} \chi_{\mathrm{d}}+b_{1} \theta+c_{1} E_{\mathrm{ar}}+d_{1} \pi_{\mathrm{p}}+e_{1} \tag{3}\\
& \operatorname{prop}_{2}=a_{2} \chi_{\mathrm{d}}+b_{2} \theta+c_{2} E_{\mathrm{ar}}+d_{2} \pi_{\mathrm{p}}+e_{2} \tag{4}
\end{align*}
$$

where χ_{d} describes the σ donor capacity, ${ }^{12,13} \theta$ is Tolman's cone angle ${ }^{11}$ which describes the size, $E_{a r}$ is the aryl effect parameter, ${ }^{14}$ and π_{p} is a measure of the π acidity of the phospho-

Table 4 Sets of physicochemical data that were analyzed in this paper

	System	Property	Ligands ${ }^{\text {a }}$	Ref.
1	$\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right) \mathrm{Fe}(\mathrm{COMe})^{\circ}$	$v_{\text {CO }}-1900 \mathrm{~cm}^{-1}$	$\begin{aligned} & 1-7,9-13,15,16,24,28,29,31-35 \\ & 41,44 \end{aligned}$	This paper, 12
2	$\mathrm{Rh}(\mathrm{acac})(\mathrm{CO}) \mathrm{PZ}_{3}$	$v_{\text {CO }}-1900 \mathrm{~cm}^{-1}$	11, 24, 28-34, 37, 41, 44	9
3	$\mathrm{Rh}(\mathrm{CO})(\mathrm{Cl})\left(\mathrm{PZ}_{3}\right)_{2}$	$v_{\text {CO }}-1900 \mathrm{~cm}^{-1}$	2, 6, 11, 15, 24, 28, 29, 31-34, 41, 44	3, 8, 59
4	$\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{PZ}_{3}\right)_{2}$	$v_{\text {CO }}-1800 \mathrm{~cm}^{-1}$	$\begin{aligned} & 6,15,16,24,28,29,31-34,41,44 \text {, } \\ & 46 \end{aligned}$	6, 60, 61, 62
5	$\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right) \mathrm{Fe}(\mathrm{COMe})^{+/ 0}$	$E^{\text {o }}(229 \mathrm{~K})$	$\begin{aligned} & 1-26,28,29,31-35,38,39,40-42 \text {, } \\ & 44 \end{aligned}$	57, 56, 58
6	$\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right) \mathrm{Fe}(\mathrm{COMe})^{+/ 0}$	$\Delta S^{\text {o }}$	$\begin{aligned} & 1-26,28,29,31-35,38,39,40-42 \text {, } \\ & 44 \end{aligned}$	56, 58, this paper
7	$\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right) \mathrm{Fe}(\mathrm{COMe})^{+/ 0}$	ΔH°	$\begin{aligned} & 1-26,28,29,31-35,38,39,40-42 \text {, } \\ & 44 \end{aligned}$	56, 58, this paper
8	$\left[(p \text {-Cymene }) \mathrm{RuCl}_{2}\right]_{2}+2 \mathrm{PZ}_{3}=2(p$-cymene $) \mathrm{RuCl}_{2} \mathrm{PZ}_{3}$	$-\Delta H_{\mathrm{rx}}$	$\begin{aligned} & 2,6,8,11,15,18,20,24-26,28,29 \text {, } \\ & 31-35,39,41,42,44 \end{aligned}$	7,63
9	$\left[(p \text {-Cymene }) \mathrm{OsCl}_{2}\right]_{2}+2 \mathrm{PZ}_{3}=2(p$-cymene $) \mathrm{OsCl}_{2} \mathrm{PZ}_{3}$	$-\Delta H_{\mathrm{rx}}$	$\begin{aligned} & 6,8,15,18,24,25,26,28,29 \\ & 31-35,41,44 \end{aligned}$	64
10	$\left[\mathrm{RhCl}(\mathrm{CO})_{2}\right]_{2}+4 \mathrm{PZ}_{3}=2 \mathrm{Rh}(\mathrm{CO})(\mathrm{Cl})\left(\mathrm{PZ}_{3}\right)_{2}+2 \mathrm{CO}$	$-\Delta H_{\mathrm{rx}}$	$\begin{aligned} & 2,6,8,11,15,18,24,25,26,28,29 \text {, } \\ & 31-34,41,44 \end{aligned}$	3, 8
11	$\mathrm{Rh}(\mathrm{acac})(\mathrm{CO})_{2}+\mathrm{PZ}_{3}=\mathrm{Rh}(\mathrm{acac})(\mathrm{CO}) \mathrm{PZ}_{3}+\mathrm{CO}$	$-\Delta H_{\mathrm{rx}}$	11, 16, 20, 23, 28-35, 41, 44	9
12	$\mathrm{Fe}(\mathrm{CO})_{3}(\mathrm{BDA})+2 \mathrm{PZ}_{3}=\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{PZ}_{3}\right)_{2}+\mathrm{BDA}$	$-\Delta H_{\mathrm{rx}}$	$\begin{aligned} & 6,8,15,16,18,20,23,25,28,29 \\ & 31-35,39,42,43,45 \end{aligned}$	6, 60, 61, 62
13	$\mathrm{PtMe}_{2}(\mathrm{CO})_{2}+2 \mathrm{PZ}_{3}=\mathrm{PtMe}_{2}\left(\mathrm{PZ}_{3}\right)_{2}+2 \mathrm{CO}$	$-\Delta H_{\mathrm{rx}}$	$\begin{aligned} & 6,8,15,18,23-26,28,29,31-34 \\ & 41,44 \end{aligned}$	65
14	$\mathrm{CpRu}(\mathrm{COD}) \mathrm{Cl}+2 \mathrm{PZ}_{3}=\mathrm{CpRu}\left(\mathrm{PZ}_{3}\right)_{2} \mathrm{Cl}+\mathrm{COD}$	$-\Delta H_{\mathrm{rx}}$	$\begin{aligned} & 1,2,6,8,11,14-16,18,24,25,26 \\ & 28,29,31-35 \end{aligned}$	5,66, 67
15	$\mathrm{Cp} * \mathrm{Ru}(\mathrm{COD}) \mathrm{Cl}+2 \mathrm{PZ}_{3}=\mathrm{Cp} * \mathrm{Ru}\left(\mathrm{PZ}_{3}\right)_{2} \mathrm{Cl}+\mathrm{COD}$	$-\Delta H_{\mathrm{rx}}$	$\begin{aligned} & 1,2,6,8,11,14-16,18,24,25,26 \\ & 28,31-35 \end{aligned}$	5,66, 67

rus(III) ligand. ${ }^{12}$ Combining eqns. (3) and (4) we obtain eqn. (5).

$$
\begin{array}{r}
\operatorname{prop}_{1}=\frac{a_{1}}{a_{2}} \operatorname{prop}_{2}+\left(b_{1}-\frac{a_{1} b_{2}}{a_{2}}\right) \theta+\left(c_{1}-\frac{a_{1} c_{2}}{a_{2}}\right) E_{\mathrm{ar}}+ \\
\left(d_{1}-\frac{a_{1} d_{2}}{a_{2}}\right) \pi_{\mathrm{p}}+e_{1}-\frac{a_{1} e_{2}}{a_{2}} \tag{5}
\end{array}
$$

For the properties $\left(\Delta H^{\circ}, E^{\circ}\right.$ and $v_{\text {co }}$ for the $\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right)$ $\mathrm{Fe}(\mathrm{COMe})^{+10}$ couple and $\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right) \mathrm{Fe}(\mathrm{COMe})^{0}$, we can safely regard the $b_{i} \theta$ contributions to these plots as negligible (see the percent contributions listed in entries 1,5 , and 7 in Table 5). Therefore, eqn. (5) becomes eqn. (6).

$$
\begin{array}{r}
\operatorname{prop}_{1}=\frac{a_{1}}{a_{2}} \operatorname{prop}_{2}+\left(c_{1}-\frac{a_{1} c_{2}}{a_{2}}\right) E_{\mathrm{ar}}+\left(d_{1}-\frac{a_{1} d_{2}}{a_{2}}\right) \pi_{\mathrm{p}}+ \\
e_{1}-\frac{a_{1} e_{2}}{a_{2}} \tag{6}
\end{array}
$$

For the special case of the PR_{3} ligands, eqn. (6) simplifies to eqn. (7) because in the QALE model both E_{ar} and π_{p} are zero

$$
\begin{equation*}
\operatorname{prop}_{1}=\frac{a_{1}}{a_{2}} \operatorname{prop}_{2}+e_{1}-\frac{a_{1} e_{2}}{a_{2}} \tag{7}
\end{equation*}
$$

for this family. Thus, in a plot of prop $_{1}$ versus prop $_{2}$ the lines for the other ligands differ from the line defined by PR_{3} due to the E_{ar} and/or the π_{p} terms [compare eqns. (6) and (7)].

In the plot of ΔH° versus v_{CO} (Fig. 1A), we see a set of parallel lines. The line for $\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$ lies below the line for PR_{3} because of the 'aryl effect'. (In the QALE model π_{p} is assumed to be zero for both PR_{3} and $\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$.) The point for $\mathrm{P}(\mathrm{Pyr})_{3}$ lies on the line for $\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$. This might mean that $\mathrm{P}(\mathrm{Pyr})_{3}$ is behaving like the $\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$ to which it is thought to be isosteric. ${ }^{1}$ This pattern could be described by eqn. (8),

$$
\begin{equation*}
\operatorname{prop}_{1}=\frac{a_{1}}{a_{2}} \operatorname{prop}_{2}+\left(c_{1}-\frac{a_{1} c_{2}}{a_{2}}\right) E_{\mathrm{ar}}+e_{1}-\frac{a_{1} e_{2}}{a_{2}} \tag{8}
\end{equation*}
$$

which does not invoke a π effect. If this is the case, then the point for $\mathrm{P}(\mathrm{Pyr})_{3}$ should always lie on the line for $\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$ in a property-versus-property plot.

In Fig. 1B, where we plot $E^{\circ}(229 \mathrm{~K})$ versus v_{CO}, we observe that the point for $\mathrm{P}(\mathrm{Pyr})_{3}$ does not lie on the line for $\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$ but rather it lies on the line for PR_{3}. Thus, we conclude that at least one electronic parameter in addition to χ_{d} and E_{ar} is required to describe $\mathrm{P}(\mathrm{Pyr})_{3}$ and $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$, in general. Based on the theoretical work of Gonzalez-Blanco and Branchadell ${ }^{4}$ and the experimental work of Moloy ${ }^{1}$ and Nolan, ${ }^{2}$ we believe that this parameter is π_{p}, which describes the π acidity of $\mathrm{P}(\mathrm{Pyr})_{3}$.

Isoequilibrium behavior of the $\eta-\mathrm{Cp}(\mathrm{CO})\left[\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}\right]$ $\mathrm{Fe}(\mathrm{COMe})^{+/ 0}$ couple gives us information about the additivity of parameters for $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$. In Fig. 2, we display relevant plots of E° / T versus $1 / T$.

The plot of E° / T versus $1 / T$ for these complexes shows a fan shaped array of lines that intersect at a point-this is isoequilibrium behavior. ${ }^{56,57}$ We have defined a 'family' as a set of ligands that exhibit isoequilibrium behavior. ${ }^{12}$ Isoequilibrium behavior requires that a family of ligands respond to variation in an 'effectively single' parameter. ${ }^{58}$ If the ligands of a family are not structurally related then this 'effectively single' parameter is a linear combination of stereoelectronic parameters (see Appendix). If the ligands of the family are structurally related such as $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$, then we may reasonably assume that $\chi, \theta, E_{\mathrm{ar}}, \pi_{\mathrm{p}}$ are parametrically related and therefore additive. Thus, any one of the four parameters can play the role of the 'effectively single' parameter. Because of the additivity of parameters, we can incorporate $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$ into our determination of the stereoelectronic parameters of $\mathrm{P}(\mathrm{Pyr})_{3}$ (vide infra).

We are now ready to determine the values of $\chi_{\mathrm{d}}, \theta, E_{\mathrm{ar}}$ and π_{p} for $\mathrm{P}(\mathrm{Pyr})_{3}$. We begin by obtaining the coefficients ' a_{i} ' through to ' e_{i} ' for the general form of eqn. (3) by means of analyses of sets of data for the σ donor ligands PR_{3} and $\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$, and π acid ligands $\mathrm{P}(\mathrm{OR})_{3}$ and $\mathrm{P}\left(\mathrm{O}-p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$. (See Table 4 for the properties that we analyzed and Table 5 for the coefficients of the resulting QALE equations.) In the QALE model these

Fig. 1 (A) ΔH° versus v_{CO} (minus $1900 \mathrm{~cm}^{-1}$). (B) E° (229 K) versus $v_{\text {co. }}$. The data refer to $\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right) \mathrm{Fe}(\mathrm{COMe})^{0}$ and the η $\mathrm{Cp}(\mathrm{CO})(\mathrm{PZ}) \mathrm{Fe}(\mathrm{COMe})^{+/ 0}$ couple. PZ_{3} is PR_{3} (open squares), $\mathrm{P}(p-$ $\left.\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$ (open circles), $\mathrm{P}(\mathrm{OR})_{3}$ (filled squares) and $\mathrm{P}\left(\mathrm{O}-p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$ (filled circles).

Fig. 2 Plot of E° / T versus $1 / T$ for the reduction potentials of the $\eta-\mathrm{Cp}(\mathrm{CO})\left[\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}\right] \mathrm{Fe}(\mathrm{COMe})^{+/ 0}$ couple.
coefficients should not change as new sets of ligands are added to the individual analyses. Thus, these coefficients are appropriate for the analysis of data for $\mathrm{P}\left(\mathrm{Pyr}_{3}\right)_{3}$. We used additivity also to incorporate $\mathrm{PPh}(\mathrm{Pyr})_{2}$ and $\mathrm{PPh}_{2}(\mathrm{Pyr})$ into the analysis of $\mathrm{P}(\mathrm{Pyr})_{3}$. Next, we constructed a set of equations using the measured properties of $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$, and the known coefficients of the QALE equations describing these properties along with their unknown values of $\chi_{\mathrm{d}}, \theta, E_{\mathrm{ar}}$ and π_{p}. This gave
us 24 equations, which are identified in entry 1 , Table 6. We weighted the equations and made them dimensionless by dividing each by its standard deviation, σ (see Table 5). Finally, we solved the resulting 24 equations for $\chi, \theta, E_{\mathrm{ar}}$ and π_{p} by linear regression; the values of these parameters along with relevant statistics are also displayed in entry 1 of Table 6.
We determined the stereoelectronic parameters of $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$ in a manner similar to that described for $\mathrm{P}\left(\mathrm{Pyr}_{3}\right)_{3}$. Appropriate information and values of the parameters for $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$ are also displayed in Table 6.

Comments on the stereoelectronic properties of $\mathbf{P P h}_{i}(\mathbf{P y r})_{3-i}$ and $\mathbf{P}\left(\mathrm{NC}_{4} \mathbf{H}_{8}\right)_{3}$

Our calculated cone angle $\left(145 \pm 3^{\circ}\right)$ of $\mathrm{P}(\mathrm{Pyr})_{3}$ agrees with the value of 145° suggested by Moloy ${ }^{1}$ and Nolan. ${ }^{2}$ Thus, the family $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$ is isosteric to $\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$. The range of the σ donor capacity $\left(\chi_{\mathrm{d}}\right)$ of $\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right.$ is similar to the range of χ_{d} for $\mathrm{P}\left(\mathrm{O}-p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$. The aryl effect parameter $\left(E_{\mathrm{ar}}\right)$ of $\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right.$ is similar to $\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$. The π acidity of $\mathrm{P}(\mathrm{Pyr})_{3}$ is about two thirds of the π acidity of $\mathrm{P}(\mathrm{OR})_{3}$ and less than half that of $\mathrm{P}\left(\mathrm{O}-p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$. This result, which seems reasonable intuitively, is in sharp contrast to the theoretical study ${ }^{4}$ that predicted that $\mathrm{P}(\mathrm{Pyr})_{3}$ would have a π acidity comparable to PF_{3}.

Our calculated value $\left(146 \pm 5^{\circ}\right)$ of θ for $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$ is statistically indistinguishable from that (145°) suggested by Nolan and co-workers. ${ }^{2}$ The σ electron donor capacity is comparable to that of $\mathrm{P}(t-\mathrm{Bu})_{3}$ as we had previously suggested. ${ }^{58}$ This ligand has a small π acidity (about thirty percent as large as $\mathrm{P}(\mathrm{OR})_{3}$) and a small (negative) aryl effect that is statistically indistinguishable from zero.

Analyses of physicochemical data

We analyzed 15 sets of spectroscopic, electrochemical, and thermochemical data that included data for $\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right.$ and $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$. The systems studied are listed in Table 4. The resulting analyses are listed in Table 5.
In doing QALE analyses it is necessary to identify any ligands (outliers) that for some reason do not fit the QALE model. Initially, this can be done graphically and then analytically. Graphical analyses are useful for exploring the trends within families of ligands. In the absence of change of mechanism or structure, or in the absence of a steric threshold, the data for $\mathrm{PR}_{3}, \mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$ and for $\mathrm{PPh}_{i} \mathrm{Z}_{3-i}$ should form individual straight lines when plotted versus χ_{d}. A large deviation of a point from the respective line is sufficient grounds to exclude the datum from the QALE analysis.
This graphical analysis clearly does not work when there are insufficient representatives of a family of ligands. We then use the results of a second test of the appropriateness of including ligands in the QALE analysis. This test, which we routinely apply to all analyses, is a comparison of the regression coefficients that are obtained as additional ligands are added to the analysis. If it is appropriate to include the data in the analysis then the regression coefficients should not change when these ligands are added to the data set. This is illustrated in Table 5. For most entries, we started with the regression equation for the set of ligands that contains phosphines and phosphites. We then added the $\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right.$ and then $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$. In all cases, the addition of $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$ to the data does not significantly alter the coefficients of the regression equations. The addition of $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$ to the data sets is more problematic; three of the analyses (entries 4C, 9C, 15D) show significant changes when the datum for the ligand is added. Based on these criteria, a handful (13 out of a total set of 322 data) were excluded from the QALE analyses. (The excluded ligands are noted in the comments column of Table 5.)

Overall, the analyses are excellent (excluding 4C, 9C, 15D) with high correlation coefficients.

Interpretation of the analyses

Carbonyl stretching frequency ($\boldsymbol{v}_{\mathrm{CO}}$). The QALE analyses of the systems shown in Table 4, clearly show that $\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right.$ behave in a manner similar to the phosphites and are described by the same set of stereoelectronic parameters. The analyses of the sets of v_{CO} data (entries 1-4 in Table 5) show that π effects account for a positive contribution of 26 to 38% in the variations of v_{co}. It is certainly expected that enhanced π acidity of the phosphorus(III) ligands would increase v_{CO}.

Heats of reaction $\left(-\Delta \boldsymbol{H}_{\mathrm{rx}}\right)$. The demonstration of the π acidity of the pyrrolyl phosphines is most dramatic in the heat of formation of [RPNP]Rh($\left.\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}\right)$ complexes where $-\Delta H_{\mathrm{rx}}$ is greatest for $\mathrm{P}(\mathrm{Pyr})_{3}$ and least for PPh_{3}. Nolan and co-workers ${ }^{2}$ ascribe this manifestation of π-effects to the synergistic interaction between the trans π basic amide ligand and the π acidic $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$. Under these conditions both the $\mathrm{N}-$ Rh and $\mathrm{P}-\mathrm{Rh} \pi$-bonds are strengthened. ${ }^{2}$

In analyses reported herein we find a large positive π effect is observed for the $\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right.$ in the heat of formation ${ }^{9}$ of $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO}) \mathrm{PZ}_{3}$, an observation that suggests that the π basicity of the ligand 'acac' is enhanced by the π acidity of $\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{)_{3-i}}\right.$ (entry 11B, Table 5). This is in accord with Nolan and co-workers' interpretation ${ }^{2}$ of $-\Delta H_{\mathrm{rx}}$ for the formation of [RPNP]Rh $\left(\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right)\right.$. The π contribution to heat of formation of $\mathrm{Rh}(\mathrm{CO})(\mathrm{Cl}) \mathrm{L}_{2}$ is smaller and actually negative (entry 10B, Table 5) even though the analyses of v_{CO} for this complex shows a significant π effect ($+26 \%$). Having a small π effect in $-\Delta H_{\mathrm{rx}}$ is hardly surprising. Nolan and co-workers ${ }^{3,8}$ have already pointed out that the π acidity can be masked in $-\Delta H_{\mathrm{rx}}$ data when the π acid ligand is competing with another π acid. In this situation, strengthening of the $\mathrm{Rh}-\mathrm{PZ}_{3}$ bond through back bonding would come at the expense of bonds to other π acidic ligands. The negative π contribution is surprising but we believe that this is real. The π contribution to $-\Delta H_{\mathrm{rx}}$ for the formation of $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{PZ}_{3}\right)_{2}$ (entry 12C in Table 5) is large and negative (-19%). It appears that the gain in stability attributable to $\mathrm{Fe}-\mathrm{P} \pi$ bonding does not compensate for the loss of $\mathrm{Fe}-\mathrm{CO} \pi$ bonding.

Conclusions

Through the analyses of property-versus-property plots, we have shown that a minimum of four parameters are required to describe stereoelectronic properties of $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$ and $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$. We calculated values for these parameters. The cone angles of all four ligands are close to the values predicted based on crystallographic measurements. $\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right.$ are poor electron donors; the π acidity of $\mathrm{P}(\mathrm{Pyr})_{3}$ is approximately two thirds of the π acidity of $\mathrm{P}(\mathrm{OR})_{3}$ and half that of $\mathrm{P}(\mathrm{O}-p-$ $\left.\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3} . \mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right.$ have values of $E_{\text {ar }}$ that are very close to those exhibited by $\mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3} . \mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$ is a potent σ donor ligand comparable to $\mathrm{P}(t-\mathrm{Bu})_{3}$. It is weakly π acidic and has an $E_{\text {ar }}$ parameter of approximately zero. We found that increasing π acidity of the phosphorus ligand increases v_{CO} substantially. The effect of $\mathrm{M}-\mathrm{P} \pi$ bonding on $-\Delta H_{\mathrm{rx}}$ is variable and can be large and positive or large and negative. Thus, it appears that π-effects can stabilize or destabilize the complex; in one case in the formation of $\mathrm{Rh}(\mathrm{acac})(\mathrm{CO}) \mathrm{PZ}_{3}$ it appears that $\mathrm{Rh}-\mathrm{P} \pi$ bonding enhances Rh -acac bonding leading to an overall stabilization of the complex. The large negative contribution of π effects in $-\Delta H_{\mathrm{rx}}$ for the formation of $\mathrm{Fe}(\mathrm{CO})_{3}\left(\mathrm{PZ}_{3}\right)_{2}$ suggest that $\mathrm{Fe}-\mathrm{P} \pi$ bonding leads to a disproportionate attenuation of $\mathrm{Fe}-\mathrm{CO} \pi$ bonding thereby leading to an overall destabilization of the complex

Experimental

General procedures

All manipulations and preparations were carried out under argon using standard techniques. Acetonitrile (J. T. Baker HPLC grade), which was purified by distillation from $\mathrm{P}_{2} \mathrm{O}_{5}$, was then kept refluxing over CaH_{2} and distilled immediately prior to use. Tetrabutylammonium hexafluorophosphate (TBAH) (Aldrich) was recrystallized from warm ethyl acetate; before use it was heated in vacuo to remove residual solvent. The phosphines (Aldrich, Lancaster and Strem) were used as received. The $\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right) \mathrm{Fe}(\mathrm{COMe})$ complexes were synthesized according to literature methods. ${ }^{68}$ The E° values for the η $\mathrm{Cp}(\mathrm{CO})(\mathrm{PZ} 3) \mathrm{Fe}(\mathrm{COMe})^{+/ 0}$ couple were obtained via cyclic voltammetry, and were measured relative to acetylferrocene. Since there was no significant decomposition of the electrochemically generated species, the E° values could be obtained by averaging the voltage of the peak potentials of the cyclic voltammogram. Each measurement was taken between 5 and 10 times. The measurements were then repeated with a fresh sample and found to agree with the original measurements. This leads to an error of $\pm 0.0007 \mathrm{~V}$ in the E° values.

Acknowledgements

SPN gratefully acknowledges the support of the National Science Foundation (CHE-9631611). We also gratefully acknowledge the helpful advice of John Houlihan, Senior Consultant for Research Statistics, Office of Information Technology, Boston University.

Appendix

We can show by isoequilibrium behavior that we have a set of self consistent parameters for the π acidic phosphorus(III) ligands. We start with the assumption that the ΔG° is linearly related to the variation in the stereoelectronic properties of a set of ligands [eqn. (A1)] in terms of the four QALE parameters

$$
\begin{equation*}
\Delta G^{\circ}=a \chi_{\mathrm{d}}+b \theta+c E_{\mathrm{ar}}+d \pi_{\mathrm{p}}+e \tag{A1}
\end{equation*}
$$

$\chi, \theta, E_{\mathrm{ar}}$, and π_{p}, where the coefficients a, b, c, d, and e are characteristic of the system being studied. These coefficients are temperature dependent and this dependence is shown explicitly in eqn. (A2).

$$
\begin{equation*}
\Delta G^{\circ}=\Delta H^{\circ}-T \Delta S^{\circ} \tag{A2}
\end{equation*}
$$

ΔS° and ΔH° are also related to the QALE parameters via eqns. (A3) and (A4).

$$
\begin{align*}
& \Delta H^{\circ}=a_{1} \chi_{\mathrm{d}}+b_{1} \theta+c_{1} E_{\mathrm{ar}}+d_{1} \pi_{\mathrm{p}}+e_{1} \tag{A3}\\
& \Delta S^{\circ}=a_{2} \chi_{\mathrm{d}}+b_{2} \theta+c_{2} E_{\mathrm{ar}}+d_{2} \pi_{2}+e_{2} \tag{A4}
\end{align*}
$$

We assume that the coefficients of eqns. (A3) and (A4) are temperature independent over the experimental range of temperature. For a group of ligands to produce a fan shaped array of lines in the $\Delta G^{\circ} / T$ versus $1 / T$ plot, it must be true that ΔH° is linearly related to ΔS° [eqn. (A5)] for this group of ligands. This requirement can be written as eqn. (A5).

$$
\begin{equation*}
\Delta H^{\circ}=\beta \Delta S^{\circ}+\Delta G_{\beta}^{\circ} \tag{A5}
\end{equation*}
$$

We have defined the term 'family' to describe a group of ligands that form such a fan shaped array (vide infra). β is the temperature of the intersection point of the fan shaped array of lines for a given family, and is the value of ΔG° at the intersection point. On combining eqs. (A3)-(A5) and solving for θ, we get an expression in terms of the other three parameters.

	n	r^{2}	σ	a	b	c	d	e	$\theta_{\text {st }}$	Comments
1A	22	0.9993	0.1848	1.05 ± 0.03	0.036 ± 0.008	-0.9 ± 0.1	4.3 ± 0.1	5 ± 1		Ligands with C_{3} symmetry without $\mathrm{P}(\mathrm{Pyr})_{3}$
B	23	1.000	0.1781	1.04 ± 0.01	0.037 ± 0.003	-0.89 ± 0.05	4.29 ± 0.05	5.1 ± 0.4		Same as above plus $\mathrm{P}(\mathrm{Pyr})_{3}$
C	24	1.000	0.1781	$\begin{aligned} & 1.05 \pm 0.01 \\ & 56 \%^{a} \end{aligned}$	$\begin{aligned} & 0.037 \pm 0.003 \\ & 4 \% \end{aligned}$	$\begin{gathered} -0.89 \pm 0.05 \\ 6 \% \end{gathered}$	$\begin{aligned} & 4.28 \pm 0.04 \\ & 34 \% \end{aligned}$	5.0 ± 0.4		Same as above plus $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$
2A	11	0.997	0.8789	1.2 ± 0.1	0	1.7 ± 0.5	5.0 ± 0.4	56.5 ± 0.7		Ligands with C_{3} symmetry without $\mathrm{P}(\mathrm{Pyr})_{3}$
B	12	0.999	0.7416	$\begin{aligned} & 1.22 \pm 0.07 \\ & 47 \% \end{aligned}$	$\begin{aligned} & 0.11 \pm 0.05 \\ & 8 \% \end{aligned}$	$\begin{aligned} & 2.4 \pm 0.6 \\ & 12 \% \end{aligned}$	$\begin{aligned} & 5.6 \pm 0.5 \\ & 33 \% \end{aligned}$	39 ± 8		Same as above plus $\mathrm{P}(\mathrm{Pyr})_{3}$
3A	12	0.997	1.595	1.6 ± 0.2	-0.25 ± 0.04	4.5 ± 0.8	6.0 ± 0.6	82 ± 6		Ligands with C_{3} symmetry without $\mathrm{P}(\mathrm{Pyr})_{3}$
B	13	0.997	1.562	1.7 ± 0.1	-0.24 ± 0.03	4.3 ± 0.7	5.8 ± 0.6	79 ± 5		Same as above plus $\mathrm{P}(\mathrm{Pyr})_{3}$
C	14	0.993	2.442	$\begin{aligned} & 1.5 \pm 0.2 \\ & 46 \% \end{aligned}$	$\begin{aligned} & -0.23 \pm 0.05 \\ & 14 \% \end{aligned}$	$\begin{gathered} 4 \pm 1 \\ 14 \% \end{gathered}$	$\begin{aligned} & 6.6 \pm 0.9 \\ & 26 \% \end{aligned}$	80 ± 8		Same as above plus $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$
4A	12	0.9991	0.5599	1.69 ± 0.07	-0.09 ± 0.01	3.6 ± 0.3	-	67 ± 2		Ligands with C_{3} symmetry without $\mathrm{P}(\mathrm{Pyr})_{3}$. No data are available for phosphites
B	13	1.000	0.5599	1.69 ± 0.07	-0.09 ± 0.01	3.6 ± 0.3	9.2 ± 0.6	67 ± 2		Same as above plus $\mathrm{P}(\mathrm{Pyr})_{3}$
C	14	0.998	1.077	$\begin{aligned} & 1.5 \pm 0.1 \\ & 37 \% \end{aligned}$	$\begin{gathered} -0.11 \pm 0.2 \\ 6 \% \end{gathered}$	$\begin{aligned} & 4.2 \pm 0.5 \\ & 13 \% \end{aligned}$	$\begin{aligned} & 11.6 \pm 0.6 \\ & 44 \% \end{aligned}$	74 ± 3		Same as above plus $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$
5A	35	0.999	0.003505	0.0159 ± 0.0002	0.00020 ± 0.00005	0.0110 ± 0.0009	0.0271 ± 0.0008	-0.519 ± 0.008		Ligands include $\mathrm{PR}_{3}, \mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}, \mathrm{PPh}_{i} \mathrm{R}_{3-i}, \mathrm{P}(\mathrm{OR})_{3}, \mathrm{P}\left(\mathrm{O}-p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$
B	38	0.999	0.004757	0.0161 ± 0.0002	0.00022 ± 0.00007	0.012 ± 0.001	0.027 ± 0.001	-0.52 ± 0.01		Same as above plus $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$
C	39	0.999	0.004760	$\begin{aligned} & 0.0161 \pm 0.0002 \\ & 73 \% \end{aligned}$	$\begin{aligned} & 0.00023 \pm 0.00007 \\ & 2 \% \end{aligned}$	$\begin{aligned} & 0.012 \pm 0.001 \\ & 6 \% \end{aligned}$	$\begin{aligned} & 0.027 \pm 0.001 \\ & 19 \% \end{aligned}$	-0.52 ± 0.01		Same as above plus $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$
6A	35	0.978	1.374	1.68 ± 0.07	0.14 ± 0.02	-11.7 ± 0.4	-8.2 ± 0.3	-27 ± 3		Ligands include $\mathrm{PR}_{3}, \mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}, \mathrm{PPh}_{i} \mathrm{R}_{3-i}, \mathrm{P}(\mathrm{OR})_{3}, \mathrm{P}\left(\mathrm{O}-p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$
B	38	0.972	1.491	1.77 ± 0.08	0.14 ± 0.02	-11.7 ± 0.4	-8.4 ± 0.3	-29 ± 3		Same as above plus $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$
C	39	0.962	1.734	$\begin{aligned} & 1.71 \pm 0.08 \\ & 36 \% \end{aligned}$	$\begin{aligned} & 0.16 \pm 0.03 \\ & 7 \% \\ & 31 \% \end{aligned}$	$\begin{gathered} -11.7 \pm 0.5 \\ 26 \% \end{gathered}$	-8.2 ± 0.4	-30 ± 4		Same as above plus $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$
7A	35	0.999	0.4628	-1.16 ± 0.02	0.013 ± 0.007	-3.7 ± 0.1	-4.8 ± 0.1	44 ± 1		Ligands include $\mathrm{PR}_{3}, \mathrm{P}\left(p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}, \mathrm{PPh}_{i} \mathrm{R}_{3-i}, \mathrm{P}(\mathrm{OR})_{3}, \mathrm{P}\left(\mathrm{O}-p-\mathrm{XC}_{6} \mathrm{H}_{4}\right)_{3}$
B	38	0.999	0.5143	-1.15 ± 0.02	0.013 ± 0.008	-3.8 ± 0.1	-4.45 ± 0.1	44 ± 1		Same as above plus $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$
C	39	0.999	0.5291	$\begin{aligned} & -1.16 \pm 0.02 \\ & 51 \% \end{aligned}$	$\begin{aligned} & 0.015 \pm 0.008 \\ & 1 \% \end{aligned}$	$\begin{aligned} & -3.8 \pm 0.1 \\ & 20 \% \end{aligned}$	$\begin{aligned} & -4.4 \pm 0.1 \\ & 28 \% \end{aligned}$	44 ± 1		Same as above plus $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$
8A	16	0.969	1.443	-0.77 ± 0.08	-0.57 ± 0.03	0	-1.0 ± 0.4	63 ± 1	121	All ligands except $\mathrm{P}(\mathrm{i}-\mathrm{Bu})_{3}$ and $\mathrm{PPh}_{2} \mathrm{Cy}$
B	18	0.962	1.582	-0.66 ± 0.07	-0.55 ± 0.02	0	-1.2 ± 0.4	61 ± 1	121	Same as above plus $\mathrm{PPh}_{2} \mathrm{Pyr}$ and $\mathrm{PPh}(\mathrm{Pyr})_{2} . \mathrm{P}(\mathrm{Pyr})_{3}$ was excluded
C	19	0.958	1.621	$\begin{aligned} & -0.61 \pm 0.06 \\ & 37 \% \end{aligned}$	$\begin{aligned} & -0.55 \pm 0.3 \\ & 50 \% \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \% \end{aligned}$	$\begin{aligned} & -1.3 \pm 0.5 \\ & 13 \% \end{aligned}$	60 ± 1	121	Same as above plus $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$
9A	12	0.955	1.728	-0.7 ± 0.2	-0.42 ± 0.05	-1.5 ± 0.8	0	67 ± 2	125	Only phosphines were analyzed, data are not available for phosphites
B	14	0.965	1.629	$\begin{gathered} -0.7 \pm 0.2 \\ 48 \%^{b} \end{gathered}$	$\begin{aligned} & -0.42 \pm 0.04 \\ & 39 \% \end{aligned}$	$\begin{aligned} & -1.5 \pm 0.8 \\ & 13 \% \end{aligned}$	$\begin{aligned} & 1 \pm 2 \\ & 0 \% \end{aligned}$	67 ± 2	125	Same as above plus $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$
C	15	0.929	2.215	-0.3 ± 0.2	-0.38 ± 0.06	-2 ± 1	-3 ± 2	63 ± 2	125	Same as above plus $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$
10A	14	0.991	1.397	-1.5 ± 0.2	-0.42 ± 0.03	-2.2 ± 0.7	-1.3 ± 0.6	140 ± 5		Phosphines and phosphites
B	16	0.998	1.501	$\begin{gathered} -1.4 \pm 0.1 \\ 51 \% \end{gathered}$	$\begin{aligned} & -0.40 \pm 0.03 \\ & 30 \% \end{aligned}$	$\begin{aligned} & -2.5 \pm 0.7 \\ & 11 \% \end{aligned}$	$\begin{aligned} & -1.5 \pm 0.6 \\ & 8 \% \end{aligned}$	136 ± 5		Same as above plus $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$ except for $\mathrm{P}(\mathrm{Pyr})_{3}$

	53 ± 11		Phosphines， $\mathrm{P}\left(\mathrm{OC}_{6} \mathrm{H}_{5}\right)_{3}$ and $\mathrm{P}\left(p-\mathrm{CF}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)_{3}$ were excluded Same as above plus $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$
4.2 ± 0.8	52 ± 10		
35\％			
－	46.6 ± 0.8	134	Phosphines，data are not available for phosphites
-1.4 ± 0.9	46.6 ± 0.8	135	Same as above plus $\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right.$
-1.3 ± 0.6	46.7 ± 0.5	135	Same as above plus $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$
12\％			
－	36 ± 1	129	Phosphines， $\mathrm{P}(\mathrm{i}-\mathrm{Bu})_{3}$ were excluded．Data are not available for phosphites
0.5 ± 0.9	35.8 ± 0.9	129	Same as above plus $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$
0%（ 0			
0	36.4 ± 0.5	135	Phosphines and phosphites， $\mathrm{P}(\mathrm{OMe})_{3}$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ were excluded
0	36.1 ± 0.6	135	Same as above plus $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$
0	36.2 ± 0.5	135	Same as above plus $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$
0%（			
0.5 ± 0.3	33 ± 1	127	Phosphines and phosphites， $\mathrm{P}(\mathrm{OMe})_{3}$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ were excluded
0.3 ± 1	33 ± 1	128	Phosphines plus $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$ ． Phosphites and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ were excluded
0.3 ± 0.3	32.7 ± 0.7	127	Phosphines，phosphites and $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$ ． $\mathrm{P}(\mathrm{OMe})_{3}$ and $\mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$ were excluded
0.7 ± 0.3	33.0 ± 0.8	127	Same as above plus $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$
9\％			

\mathfrak{n}	tin m	$\pm .$	\bigcirc	non	$00_{0}^{0} 0$
＋1＋1	$+1+1+1$	＋1＋1	＋1	$+1+1$	$+1+1+1$
n 700		$00.0{ }^{\circ}$	－	ㄱ．30ㅇ	On「O．${ }^{\circ}$
iNi	ワTアコ	アT	T	oio	

			$\begin{aligned} & \mathbf{0} \\ & +1 \\ & 0 \\ & 0 \\ & 1 \end{aligned}$	$\begin{gathered} \hat{0} \\ -0 \\ 0 . \\ +1 \\ +1 \\ 0 . \\ 0.0 \\ 0 \\ 0 \\ 0 \end{gathered}$	
			\bigcirc	0080	
	N \ddagger N ∞ の $\circ 0^{\circ}$	$\begin{aligned} & \text { N } \\ & \delta^{\infty} \\ & 0 . \infty \\ & 0.0 \end{aligned}$	\cdots	$\stackrel{n}{=}$	
$\begin{aligned} & \infty \\ & 0.0 \\ & 0 \\ & \hline 0 \end{aligned}$		$\frac{\infty}{\hat{\alpha}}$	$\stackrel{n}{2}$	$\begin{aligned} & \overline{6} \\ & 6 \\ & 0 \\ & 0 \end{aligned}$	
9 N	$\cdots 9$ 은	N	\cdots	\bigcirc	Nヘッ
$\mathbb{Z}_{ص}$	$\mathbb{Z}_{\boldsymbol{Z}}$	$\underset{\sim}{\mathbb{N}}$	$\underset{\Xi}{\Xi}$	$ص \cup$	$\underset{\sim}{\pi} ッ \cup 0$

We substitute this expression for π_{p} into eqns．（A3）and（A4）． On collecting terms in χ, E_{ar} ，and π_{p} ，we get the following expressions for ΔH° and ΔS° ，where z_{4}（the subscript＇ 4 ＇refers

$$
\begin{gather*}
\Delta H^{\circ}=\beta A z_{4}+B \tag{A6}\\
\Delta S^{\circ}=A z_{4}+C \tag{A7}
\end{gather*}
$$

to the fact that z_{4} is derived for a four parameter system）is the effectively single variable given in eqn．（A8），and q is given in eqn．（A9）．

$$
\begin{gather*}
z_{4}=\chi_{\mathrm{d}}+q \pi_{\mathrm{p}}+r E_{\mathrm{ar}} \tag{A8}\\
q=\frac{d_{2} b_{1}-d_{1} b_{2}}{a_{2} b_{1}-a_{1} b_{2}} \tag{A9}
\end{gather*}
$$

We see that，in general，both ΔS° and ΔH° for a family are expressible in terms of a single variable z_{4} ，which is a linear combination of χ, E_{ar} ，and π_{p} ．Thus，for a given family of ligands we should obtain a linear plot of ΔS° versus z_{4} ［eqn．（A7）］．From the coefficients presented in entries 6A and 7A in Table 5 we obtain the following values of＇q＇and＇r＇： $q=2.90$ and $r=2.05$ ．The values of χ_{d} ，＇q＇and＇r＇were used to calculate z_{4} and the plot of ΔS° versus z_{4} is shown in Fig．A1．

We found two families of ligands containing at least four ligands each by means of a plot（not shown）of ΔH° versus ΔS° ． Members of a family lie on a straight line in the ΔH° versus ΔS° plot and must exhibit isoequilibrium behavior as is verified in the plots of E° / T versus $1 / T$（Figs．A1－B and A1－C）．The plot of ΔS° versus z_{4} for each family is indeed linear as is seen in Figs．A1－D，and A1－E．For comparison，we have also shown plots of ΔS° versus χ_{d} only for each family．These points do not fall on a straight line and simply provide a visual estimate of the contribution of the terms $q \pi_{\mathrm{p}}$ and $r E_{\mathrm{ar}}$ to the value of z_{4} ．

References

1 K．G．Moloy and J．L．Petersen，J．Am．Chem．Soc．，1995，117， 7696.
2 J．K．Huang，C．M．Haar，S．P．Nolan，W．J．Marshall and K．G． Moloy，J．Am．Chem．Soc．，1998，120， 7806.
3 S．Serron and S．P．Nolan，Organometallics，1996，15， 4301.
4 O．Gonzalez－Blanco and V．Branchadell，Organometallics，1997，16， 5556.

5 S．Serron，C．Li and S．P．Nolan，Organometallics，1996，15， 4020.
6 S．A．Serron and S．P．Nolan，Inorg．Chim．Acta，1996，252， 107
7 S．Serron，S．P．Nolan，Y．A．Abramov，L．Brammer and J．L． Petersen，Organometallics，1998，17， 104.
8 A．Huang，J．E．Marcone，K．L．Mason，W．J．Marshall，K．G．Moloy， S．Serron and S．P．Nolan，Organometallics，1997，16， 3377.
9 S．Serron，J．Huang and S．P．Nolan，Organometallics，1998，17， 534.
10 T．Bartik，T．Himmler，H．－G．Schulte and K．J．Seevogel， J．Organomet．Chem．，1984，272， 29.
11 C．A．Tolman，Chem．Rev．，1977，77， 313.
12 A．L．Fernandez，C．Reyes，A．Prock and W．P．Giering，J．Chem． Soc．，Perkin Trans．2，2000， 1033.
13 H．－Y．Liu，E．Eriks，A．Prock and W．P．Giering，Organometallics， 1990，9， 1758.
14 M．R．Wilson，D．C．Woska，A．Prock and W．P．Giering，Organo－ metallics，1993，12， 1742.
15 M．R．Wilson，H．－Y．Liu，A．Prock and W．P．Giering，Organo－ metallics，1993，12， 2044.
16 A．A．Tracey，K．Eriks，A．Prock and W．P．Giering，Organo－ metallics，1990，9， 1399.
17 J．Panek，A．Prock，K．Eriks and W．P．Giering，Organometallics， 1990，9， 2175.
18 B．A．Lorsbach，A．Prock and W．P．Giering，Organometallics，1995， 14， 1694.
19 B．A．Lorsbach，D．M．Bennett，A．Prock and W．P．Giering， Organometallics，1995，14， 869.
20 A．L．Fernandez，C．Reyes，M．R．Wilson，D．C．Woska，A．Prock and W．P．Giering，Organometallics，1997，16， 342.
21 A．L．Fernandez，A．Prock and W．P．Giering，Organometallics，1996， 15， 2784.

Table 6 A listing of the methods of the determination of the stereoelectronic parameters of $\mathrm{P}(\mathrm{Pyr})_{3}$ and $\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$ and the regression analyses

	Ligand	Equations used ${ }^{a}$	χ	θ	$E_{\text {ar }}$	π_{p}	n	r^{2}
1	$\mathrm{P}(\mathrm{Pyr})_{3}$	$1 \mathrm{~A}[\mathrm{P}(\mathrm{Pyr}) 3], 2 \mathrm{~A}\left[\mathrm{P}(\mathrm{Pyr})_{3}\right], 3 \mathrm{~A}\left[\mathrm{P}(\mathrm{Pyr})_{3}\right], 5 \mathrm{~A}\left[\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}\right]$, $6 \mathrm{~A}\left[\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}\right], 7 \mathrm{~A}\left[\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}\right], 8 \mathrm{~A}\left[\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}\right]$,	31.9 ± 0.7	145 ± 3	3.3 ± 0.2	1.9 ± 0.2	24	0.999
2	$\mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$	$10 \mathrm{~A}\left[\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right], 14 \mathrm{~A}\left[\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right], 15 \mathrm{~A}\left[\mathrm{PPh}_{i}\left(\mathrm{Pyr}_{3-i}\right]\right.\right.\right.$ $1 \mathrm{~A}, 3 \mathrm{~A}, 5 \mathrm{~A}, 6 \mathrm{~A}, 7 \mathrm{~A}, 8 \mathrm{~A}, 14 \mathrm{~A}, 15 \mathrm{~A}$	-1.2 ± 1.4	146 ± 5	-0.6 ± 0.4	0.9 ± 3	8	0.998

${ }^{a}$ The numbers refer to entries in Table 5. Designations such as $1 \mathrm{~A}\left[\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}\right]$ indicate that the data for these ligands were incorporated into the $\mathrm{P}(\mathrm{Pyr})_{3}$ parameter calculation by taking advantage of the additivity of the parameters for $\mathrm{PPh}_{i}(\mathrm{Pyr})_{3-i}$.

Fig. A1 Data for this figure are taken from measurements on the $\eta-\mathrm{Cp}(\mathrm{CO})\left(\mathrm{PZ}_{3}\right) \mathrm{Fe}(\mathrm{COMe})^{+/ 0}$ couple. (A) Plot of ΔS° versus z_{4} for all the ligands in Table 3. (B) Plot of E° / T versus $1 / T$ for the family comprised of $\mathrm{PZ}_{3}=\mathrm{P}(\mathrm{O}-\mathrm{iPr})_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}, \mathrm{PPh}_{2} \mathrm{Pr}, \mathrm{PEt}_{3}$. (C) Plot of E° / T versus $1 / T$ for the family comprised of $\mathrm{PZ}_{3}=\mathrm{P}(\mathrm{OEt})_{3}, \mathrm{P}(\mathrm{OBu})_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}, \mathrm{PPh}_{2} \mathrm{Me}, \mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$. (D) Plot of ΔS° versus z_{4} and χ_{d} for $\mathrm{PZ} \mathrm{H}_{3}=\mathrm{P}(\mathrm{O}-\mathrm{Pr})_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}, \mathrm{PPh}_{2} \mathrm{Pr}^{2}, \mathrm{PEt}_{3} .(\mathrm{E})$ Plot of ΔS° versus z_{4} or χ_{d} for $\mathrm{PZ}_{3}=\mathrm{P}(\mathrm{OEt})_{3}, \mathrm{P}(\mathrm{OBu})_{3}, \mathrm{P}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}, \mathrm{PPh}_{2} \mathrm{Me}, \mathrm{P}\left(\mathrm{NC}_{4} \mathrm{H}_{8}\right)_{3}$.

22 A. L. Fernandez, A. Prock and W. P. Giering, Organometallics, 1994 13, 2767.
23 J. Bartholomew, A. L. Fernandez, B. A. Lorsbach, M. R. Wilson, A. Prock and W. P. Giering, Organometallics, 1996, 15, 295.

24 A. J. Poe and R. H. E. Hudson, Organometallics, 1995, 14, 3238.
25 A. J. Poe, D. H. Farrar and Y. Zheng, J. Am. Chem. Soc., 1992, 114, 5146.

26 A. Neubrand, A. J. Poë and R. van Eldik, Organometallics, 1995, 14, 3249.

27 D. H. Farrar, A. J. Poë and Y. Zheng, J. Am. Chem. Soc., 1994, 116, 6252.

28 L. Z. Chen and A. J. Poë, Coord. Chem. Rev., 1995, 143, 265.
29 N. M. J. Brodie and A. J. Poë, Can. J. Chem., 1995, 73, 1187.

30 R. Romeo, G. Arena and L. M. Scolaro, Inorg. Chem., 1992, 31, 4879.

31 X.-L. Luo, G. J. Kubas, C. J. Burns, J. C. Bryan and C. J. Unkefer, J. Am. Chem. Soc., 1995, 117, 1159.

32 C. A. Bessel, J. A. Margarucci, J. H. Acquaye, R. S. Rubino, J. Crandall, A. J. Jircitano and K. J. Takeuchi, Inorg. Chem., 1993, 32, 5779.
33 C. Moreno, S. Delgado and M. J. Macazaga, Organometallics, 1991, 10, 1124.
34 R. S. Herrick, R. R. Duff, Jr. and A. B. Frederick, J. Coord. Chem., 1994, 32, 103.
35 D. H. Farrar, J. Hao, A. J. Poë and T. A. Stromnova, Organometallics, 1997, 16, 2827.

36 R. Romeo and G. Alibrandi, Inorg. Chem., 1997, 36, 4822.
37 W. Linert, Aust. J. Chem., 1986, 39, 199.
38 W. Linert and R. F. Jameson, Chem. Soc. Rev., 1989, 18, 477.
39 W. Linert and V. N. Sapunov, Chem. Phys., 1988, 119, 265.
40 W. Linert, R. Schmid and A. B. Kudrjawtsev, Aust. J. Chem., 1985, 38, 677.
41 W. Linert and L. Han, Chem. Phys., 1989, 139, 441.
42 W. Linert, Chem. Phys., 1987, 116, 381.
43 H. J. Kreuzer and N. H. March, Theor. Chim. Acta, 1988, 74, 339.
44 W. Linert, Inorg. Chim. Acta, 1988, 141, 233.
45 W. Linert and A. B. Kudrjawtsev, Aust. J. Chem., 1984, 37, 1139.
46 W. Linert, A. B. Kudrjawtsev and R. Schmid, Aust. J. Chem., 1983, 36, 1903.
47 W. Linert, Chem. Soc. Rev., 1994, 429.
48 O. Exner, Prog. Phys. Org. Chem., 1973, 10, 411.
49 O. Exner, Collect. Czech. Chem. Commun., 1972, 37, 1425.
50 O. Exner and V. Beranek, Collect. Czech. Chem. Commun., 1973, 38, 781.

51 O. Exner, Collect. Czech. Chem. Commun., 1973, 38, 799.
52 S. Wold and O. Exner, Chem. Scr., 1973, 3, 5.
53 O. Exner, Collect. Czech. Chem. Commun., 1975, 40, 2762.
54 R. R. Krug, W. G. Hunter and R. A. Grieger, J. Phys. Chem., 1976, 80, 2335.
55 J. E. Leffler and E. Grunwald, Rates and Equilibria of Organic Reactions, John Wiley, New York, 1963.

56 A. L. Fernandez, C. Reyes, A. Prock and W. P. Giering, Organometallics, 1998, 17, 2503.
57 A. L. Fernandez, T. Y. Lee, C. Reyes, A. Prock and W. P. Giering, Organometallics, 1998, 17, 3169.
58 A. L. Fernandez, T. Y. Lee, C. Reyes, A. Prock, W. P. Giering, C. M. Haar and S. P. Nolan, J. Chem. Soc., Perkin Trans. 2, 1999, 2631.

59 M. R. Wilson, A. L. Fernandez, A. Prock, W. P. Giering, C. M. Haar, S. P. Nolan and B. M. Foxman, submitted for publication in Organometallics.
60 C. Li and S. P. Nolan, Organometallics, 1995, 14, 1327.
61 L. Luo and S. P. Nolan, Inorg. Chem., 1993, 32, 2410.
62 C. Li, E. D. Stevens and S. P. Nolan, Organometallics, 1995, 14, 3791.

63 S. A. Serron and S. P. Nolan, Organometallics, 1914, 1995, 4611.
64 J. Huang, S. Serron and S. P. Nolan, Organometallics, 1998, 17, 4004.

65 C. M. Haar, S. P. Nolan, W. J. Marshall, K. G. Moloy, A. Prock and W. P. Giering, Organometallics, 1999, 18, 4740.

66 S. A. Serron, L. Luo, E. D. Stevens, S. P. Nolan, N. L. Jones and P. J. Fagan, Organometallics, 1996, 15, 5209.

67 S. A. Serron, L. Luo, C. Li, M. E. Cucullu, E. D. Stevens and S. P. Nolan, Organometallics, 1995, 14, 5290.

68 M. M. Rahman, H.-Y. Liu, K. Eriks, A. Prock and W. P. Giering, Organometallics, 1989, 8, 1.

